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Abstract

The rudimants of the module theoretic approach to
linear system theory are briefly reviewed. Two types of
integer invariants of systems are mentioned: the reduced
reachability indices, and the latency indices. The
reduced reachability indices are related to the problem
of reducing a system through the application of causal
precompensation. The latency indices are related to the
problem of causal factorization of one system over
another.

1. INTRODUCTION

In this short note we wish to summerize some of the
basic features of the module theoretic approach to linear
system theory. Our discussion will be mainly on a des -
criptive level, and proofs will be omitted. A more
detailed discussion of the topics mentioned below can

be found in HAMMER and HEYMANN [1981 a and b).

Formal Laurent series: (Consider a discrete time

linear time-invariant system I. At each instant of time
t, the system T admits an m-dimensional real vector

m . . .
u, € R~ as input, and has a p-dimensional real vector

t
Yy e ®F as output. Each input sequence

to T

uto, uto+l""
can be Tormally represented as alaurent series

-t
wz o,

m
where u, ¢ R serves as the

t
time marker, and where to

for all t, the index 1

is the finite time at which

the sequence "starts". The set of all such formal Laurent

"% in
the

geries is denoted by ARm. Bach series u = Zutz
AR®  can ve neturally divided into three parts :
(strict) past part o o= +%o utz't ; the present part

o . F -1
w = v, ; and the strict) future part w = +8o B2
In the set ARm one can define an operation of
. .
addition for every pair of elements ut o= t;ti uiz ’
=05

i=1,2, by
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\ 1 2 ;1 2y =t
. = s | +
(1.1} w + u tgmln(tl,tz)‘ut ut)z
o’ 7o
{coefficientwise). Also, given an element k = tzt ktz-t
=To

in the set AR of scalar Laurent series, one can define

an operation of multiplication

1
1 o =10 1 -
(1.2) ku = tgto+t% [jEto kg g e

(convolution). The importance of these operations is that,
under them, the set AR forms a field, and the set AR®
forms an m-dimensional linear space over this field (a

AR = linear space).

The relevance of AR-linearity to our discussion
stems from the fact that it is closely related to time
invariance. Indeed, the system T induces & map
hit] ARm - ARP which assigns to each input seguence
u € ARm its corresponding output sequence y = fu ¢ ARP.
If the map f in particular, it
thet is,

is AR-linear, then,
comrutes with the element =z ¢ AR

for every u e AR". But, by (1.2),

fzu = zfu
multiplication by =z
the segquence to the
f
AR=linegrity implies

represents a one step time shift of
left, so that the last equation implies that commutes
with the time shift operator. Thus,
time invariance (KALMAN, FALBR, and ARBIB [1969], WYMAN
[1972]). Conversely, under scme mild assumptions (see
e.g., HAMMER and HEYMANN [198la, section 2]), if the
linear system ¥ 1is time invariant, then the map

f: ARm - ARp induced byit is AR-linear. Summerizing,
we have that, in a broad sense, AR-linearity is equiva-

lent to time invariance of linear systems.

Rings and modules: The set ARm of Laurent series

contains, as subsets, the set

with coefficients in R
9 -t
T.oouz

O™R® of all (polynomial) elements of the form £2p YU
- =%o
t, 20, and the set Q R® of all fower series elements
-t +
of the form tgo U2 Q=R .
set of polynomials with real coefficients, and Q R
with real coeffi

. In particular, is the usual
is

the set of all power series in 2t
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-+ -
9}

{ anc &

1

cients. It is knowr that both f & R forn

'

principal ideel domeins under the operations of addition

and multiplication defined ir (I.2) ard (1.2). The set
+ I - PO

Q'”R" forms a free o R-module =f rank m, and O R
Torms a free { R-module of ratk 1m, both under the ope-

rations (1.1} ard (1.2).

is also a free

it.

the AR-linear space ARm
jis +

+. 3 ~T 3 . ~ - o
& R-module, and 0 R is then an & Zesupbmodule of

Clearly,

”hus, we can consider the R=module

AR” / “3

cuotient O
module is an
nts of ART

modulo their polynomial part. E
i 1 -1 _n .

Zach element in ient

of eleme

this quot
eculvalerce class ¢ which are

equal

ments u” = I uz e AR, 1= 1,2 , belong to the same

.. A ol . a z 1
eguivalence class ¢ ¢ AR‘/Q = if end only if u. = ul
for a1l t > ¢ (i.e., the stricily future parts of the

dentical ). As in

g, we can define z cancnical projection

. =B .
every elemert iIn AR its equivalence

definiticn, this projection is

s i

Analcgously, the AR-1linesr szace AR forms an

2 R-nodule as well, QR ls
m/,‘ m

The guiotient 0 E-module AR /0 R is

a submodule of
ther well

and

It consists of equivslence classes each of which

all those elerents in AR“ which have the same strictly
l—‘

polyncmisl zars; two elements u’ = T U B

S

AR

that is,

uivelence class

i=1,2, in

Tyl . . . . "
in AR7/5TRT if and only if wul =u, for all % <0,
9 U
we alsc cbiairn an induced caronical projection of O -
noduales
T pRT o pRT/ATET
. . - no, .
which assigns to each element in AR~ 1ts ecuivalence
. 0= ‘ + .-
class in AR/Q°R" . The projectic 7 and T are
repeatedly employed in ocur discussicn below.

Transfer matrices: Let I be an mxp transfer
matrix of a lireesr time invariant system. Svery entry of
T is evidently arn element in AR, and thus T cazn be

- . . N . ho!
regarded as & linear transformation ( atrix) ‘r VR,

e _D .
Cecaversely, let f: AR7 = AR® be 2 AR-linear map. As

wsual, f can be represented as a maltrix relative to spe-
cified bases Gy in ARm and yl,...yp i Ahp.m
Of particular importance is the case when Ugsee ey, € R
and Yireres¥y € Rp, where R and Rp are regarded

as subsess (of "purly cresent” sequences) of ART and
ARP, respectively. In such case, the matrix representa-
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cuantities, arnd in o al

called polyncmisl I

transfer mantrix are polynomisls

cutput, map 1f it is both rationasl and siricily causal;
Y
and, finally, 1t is called bicausal if It is invertible
gnd if beoth of 1t snd its inverse are causal.
FACTICEIZATION

T £ = P > =3 =z J)

Let f: AR = AR ce a AR-llrear maz. As we have
seen befcre, such a map represents z linear time hwariant

. - jul . . .2
syster sdmitting inputs from = and havizg 1<s outputs
ir BY. Since f in AE-linear, it ig svidently alsc
T .
ence, the map 7 f 1is asgain an

A = Ker = isg an O E-module.

noduvle A

sequences (to the
represented by T ) t2 cutput secguernces
which have zero future parts. It forms an extension of

the classical KAIMAN [19€5] realizaiion module A
which consists of all past i2put seguences that lead to

sequerces hav have thaz

sutpus

ing zero

future carts. Ve

I

=
0}
s
o
0]
el

ists a polynomial map °

that 7. = Ff it awd only if if Xer mf

2
urimodular map M: ART

.. . C
(i1) There exisis = pslyno: -
AT such that f. =Mf, if and ozly if Xer w f, =
- Z 1 1
Ker = . .
z
- . +

module Xer mIT ¢
polynomial and nonmial elements
when , this module
gene the /AR-lirear

Jevertheless, for a particular £, 1t may happen that

Ker = T

(=)

“sts of pclynomlial elements only, that is,

+ Ly - . N
In suck case, Xer m 1 the ¥almen reslizstion



module (1.2). When (%) holds, the map f 1is called
(HAMMER and HEYMANN [1981b]). We

note that a strictly observable map is necessarilly

strictly observable

injective. Further, letting I Ybe the identity, we
clearly have that Ker ﬂ+I = Q+Rm. Thus, a strictly
obsevable map f satisfies Ker ﬂ}f C Xer ﬂ+I. By Theo-
rem 2.2 this implies that there exists a polynomial map
P such that Pf =T, i.e., a strictly observable map

has a polynomial left inverse . As we show in the next

section, the system theoretic significance of strictly
Observable systems is that they are minimal in the sense
that their MacMillan degree cannot be reduced by the
application of causal precompensation (see Theorem 3.2(i)
bel:w).

In complete analogy, one can alsc consider the o R-
module Ker m f. This module consists of all the input
are zero
this

of causal

sequences that lead to output sequences which
inthe past. From the algebralc point of view,
module determines the solution to the problem
factorization, as follows (HAMVER and HEYMANK [1981a]).

(2.3) THEOREM. Let £,,f,: AR" % AR® be AR-linear
maps.
(i) There exists a causal map h: ARp nd ARp such that

= Iy . - C - .
fz hfl if and only if Ker m fl Ker m f2
(ii) There exists a bicausal rap t: ARE -+ pARP such that
f2 = Lfl if and only if Ker nm fl = Ker fz.

As we can see, there is a complete analogy between

Theorems 2,2 and 2.3 .

3. KERNELS AND INDICES

In the present section we limit our discussion o
the case of injective maps (i.e., transfer matrices with
AR-linearly independent columns). For the more general

case, see HAMMER and HEYMANK [1981 a and b].

Let £ ARm -+ ARp be arn injective rational AR-
linear map. We assign next to each one of the modules
Ker ™ and Ker v f

to have system theoretic significance. Before doing so,

a set of integers which turn out

we briefly review the concept of proper bases. Let

a=2= dtz“t be an element in ARm'. The order of 4
is defined as ord d := m%n (dt £ 0} if 4 #£ 0, and
if d=0. When 4
the order is just the negative of the degree. The lea -

ord 4 1= = is a polynomial, then

ding coefficient & of d 1is the first nonzero coef-
ficient in the Laurent series expansion, that is §:=
a if 4 #0, and 4 :=0 if d = 0. A set of ele-

ord d
ments dl""’dn € ARm is properly independent if the
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leading coefficients él,...,&n e B are linearly inde-
R.
sisting of properly independent elements is called a
proper basis. A proper basis dl""’dm € ARn is ordered
if ord di+ X ord di for all i =1,...,,m1.

pendent over the field of real numbers A basis con-

1
Returning now to our modules, we have the following
(HAMMER and HEYMANN [1981b]).

(3.1) THEOREM. Let f: AR" » ARP be an injective ratio-
nal AR-linear map. Then,

(1) the 0'R-module Ker mf has an ordered proper

EEEEE dl"
(i) if di,...,dﬁ is any ordered proper basis of the

0 R-module Ker mf, then ord di = ord di Tor all

..,dm ;3 and

i=1,...,m

Now, let 1 ARm + 72P be an injective rational
AR-linear map, and let dl""’dm, be an ordered proper

basis of Ker w1, Then, the reduced reachability indices

“Liuzf"'ium of f are defined as By i= -org di, i=
lyeeeym . In view of Theorem 3.1, these indices are
wniguely determined by f. The system theoretic signifi-
cance of the reduced reachability indices is related to
the characterization of the set of all dynamics that can
be assigned to a given £ by applying causal precompen-

sation. We next discuss this point. Let

Xy = T + O
Vi = B

be a reachable realization of the system represented by
f. As is known, the dynamical properties of the system

are determined by the pair of matrices (F,G), which we

call a semi-realizetion of f. A semirealization (F,G)
of f 1s canonical if there exists a matrix H such

that (F,G,H)
Finelly, the reachsbility indices (or Kronecker invari-
ants) of a system are discussed :n ROSENBROCK [1970],
BRUNOVSKY (19707, and KAIMAN [1971]. We can now state
the following (HAMIER and HEYMANK [1981b])

represents & canonical reaglization of f.

(3.2) THEOREM. Let £: AR™ 4 AR be an injective linear

>

i/o map with reduced reachability indices et

> >,
My ZH ZH
Then,

(1) TFor every nonsingular causal precompensator

11 ART ARm, the reachabllity indices klflzz...jim

of the system ft satisfy Xi Zu, foralli=1,...m
The lest condition holds with equality for all 1 =1,...,

m 1f and only if ft
(1i) Let (F,6)
bility indices

is strictly observable.

be any reachsble pair with m reacha-
8 >,.0.0>8 S, > u.
128228, If 8 >y, for all
i=1,...,m then there exists a nonsingular causal

precompensator t: AR™ 2 AR”  such that (F,G)
canonical semirealization of the system £t .

is a




In particular, Theorem 3.2 implies that the reducad
reachability idices are the minimal reachability indices
obtainable through causalprecompensation, and that the
dynamical order of a strictly observable system cannot
be further reduced through the application of causal

preccmpensation.

Consider now a particular type of causal precompen-
sators - the fesdback preccmpensators, which are defined
ag folicws., Let r: ARP 4 AR® ve acausal map, and
assure that it is ccnnected as an output feedback arcund
the system £t ARm'* ARp . The resulting system fr

will then be given by

fr= flr N

where 1 = [I+ rf]-l is an equivalent (bicausal)
precompensator, The following theorem states that a
system can be maximally reduced (i.e., transformed irto
a strictly observable one) also by using causal output
feedback alune (HAMMER and ESYMANN [1981b]).

(3.3) THEORTM. lLet f: 227 4 ARY e an injective linear

i/ map with reduced reachsbility indices pl:p?z...zpm.

There exists a causal output feedback compensator

r: AR # AR® such that T, has reachebility indices

equal to Hyservsh e

.
In snalogy to the case of Ker 7 f, one can also

assign a set cf integers tc the o R-module Ker 7 f.

For this purpose we need the following result (HAMMER
and HEYMANN [1331a]).

(3.1) THEOREM, Let f©: AR™ 2 AR® be an injective AR-

linear map. Then,

(i) the O R-module Ker 7 f has an ordered DrOper

basis dl""’dm ; and

(11) if di,...,d& is any crdered proper basis of

Ker mf, thern ord 4} =ord 4, for all i =1,...,m
Now, let i AR™ 2 ARP be an injective linear i/o
rap. We define she latency indices UIEUEE...ZUM of f
as ui t= =ord di -1, 1=21...,m . In view of Theoren
2.4, the latency indices are uniquely determined by f.
The system theoretic significance of the latency indices
is related to the rroblem of causal factorization with

reriaizders, which is stated as follows.

AR 2 AR® ve raticnal
r. ARP -

Let £,%,:

AR-linear maps. Find a palr of rational maps

Causal division:

AR ang q ARE - ARP, where r is causal, such that
(2.5) f,=rf +q,
and where g has the minimal possible dynamical order.

The oproblem of causal division appears as an under=

lying problem in a variety of control theoretic circum-
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stances, One such circumstance is the problem of feedback
representation of precompensators, which 1s stated as
follows. Let f: AR® # AR® %be the transfer of a given
system, and suppose that one 1s required to design

around I a classical conbrol configuration of the

form

+

(3.6)

which transforms f into a prescribed transfer matrix
£'. In (3.6), r: ARP - AF® is & causal sutput feedback,
and v: AR® * AR™ is & causal precompensator. We add
the requirement that v be ronsingular in order to
prevent pcssible loss of degrees of freedom of the
control variables. Thus, we have to find causal compen-
sators

v and r, where v is nonsingular, such that

£ o= fv[I + rfv]-l.
This problem can be solved in two steps: (1)
ART 4 AR® for which

find compensatcrs v

compute
ar equivalent preconpensator i
' = £1, and (ii) and r for

which
1= v[I+ rfv]'l .

4is we see, step (i) cas be solved through (the dusl of)
Theorem 2.3, whereas step (1i) requires the solution of
the eguation

-1 -1
vt T =i+ v,

which is of the form (3.53)
Several other circumstances in which equation (3.5)
is encountered are indicated in EMRE and HAUTUS [19801.
The connection between the latency indices and the
problem of causal division of maps is given by the fol-
lowing result,the proof of which is given in HAMMER and
HEYMANN [1981a, proof of Theorem 7.2].(The reference

also includes the required explicit constructions.)

Let £: AR® = AR® be an injective linear
SR VIR I ®
l._

i eIV

(3.7) THEORZM.

i/o map with latency indices

and let

£1: AR® 2 AR® be a rational AR-linear map. There exists
such that f' =

a rational causal map Ir: 43P 2 AzP

t1ity indi Sh >, L >N
pility indices ll— pZeee X
for all

22" 2 ARP  has reache-

which satisfy A, < v,
R — - 1

rf - q, where the remainder a:

1 =100y, .

The bound on the reachability indices of the



remainder g given by Theorem 3.7 is tight in the
following sense: There exists a map f': AR" 4 ARP for
which, in every eguation of the form f' = rf + g with

causal r, the reachability hdices )\l—%z:"'z}\mOf Q

satisfy }\i Z v, for all i=1,...,m where U >u>..
zum are the latency indices of f (see HAMMER and
HEYVMANN [198la, Theorem 7.97).
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